Menu
Your Cart

BC547 - NPN - Transistor

BC547 - NPN - Transistor
BC547 - NPN - Transistor
Hot
BC547 - NPN - Transistor
BC547 - NPN - Transistor
BC547 - NPN - Transistor
GST Invoice
GST Invoice for Input Tax Credit.
Bulk Order
If your required quantity is more than listed below or for Bulk Orders/Quotes, please ping us for lead times & to pre-order.
Rs. 3.00
  • Stock: 46
  • Model: BC547-NPN
  • SKU: PL-96

 

BC 547 NPN transistor 45V 100mA hFE 150

 

Specifications:

  • BIPOLAR TRANSISTOR, NPN, 45V, TO-92
  • Transistor Polarity: NPN
  • Collector Emitter Voltage V(br)ceo: 45V
  • Transition Frequency Typ ft: 300MHz
  • Power Dissipation Pd: 625mW
  • DC Collector Current: 100mA
  • DC Current Gain hFE: 150
  • Straight-lead housing 

 

Introduction to Bipolar Junction Transistors

 

(Source: http://www.allaboutcircuits.com/textbook/semiconductors/#chpt-4)

The invention of the bipolar transistor in 1948 ushered in a revolution in electronics. Technical feats previously requiring relatively large, mechanically fragile, power-hungry vacuum tubes were suddenly achievable with tiny, mechanically rugged, power-thrifty specks of crystalline silicon. This revolution made possible the design and manufacture of lightweight, inexpensive electronic devices that we now take for granted. Understanding how transistors function is of paramount importance to anyone interested in understanding modern electronics.
My intent here is to focus as exclusively as possible on the practical function and application of bipolar transistors, rather than to explore the quantum world of semiconductor theory. Discussions of holes and electrons are better left to another chapter in my opinion. Here I want to explore how to use these components, not analyze their intimate internal details. I don’t mean to downplay the importance of understanding semiconductor physics, but sometimes an intense focus on solid-state physics detracts from understanding these devices’ functions on a component level. In taking this approach, however, I assume that the reader possesses a certain minimum knowledge of semiconductors: the difference between “P” and “N” doped semiconductors, the functional characteristics of a PN (diode) junction, and the meanings of the terms “reverse biased” and “forward biased.” If these concepts are unclear to you, it is best to refer to earlier chapters in this book before proceeding with this one.
A bipolar transistor consists of a three-layer “sandwich” of doped (extrinsic) semiconductor materials, either P-N-P in Figure below(b) or N-P-N at (d). Each layer forming the transistor has a specific name, and each layer is provided with a wire contact for connection to a circuit. The schematic symbols are shown in Figure below(a) and (d).

BJT transistor: (a) PNP schematic symbol, (b) physical layout (c) NPN symbol, (d) layout.
The functional difference between a PNP transistor and an NPN transistor is the proper biasing (polarity) of the junctions when operating. For any given state of operation, the current directions and voltage polarities for each kind of transistor are exactly opposite each other.
Bipolar transistors work as current-controlled current regulators. In other words, transistors restrict the amount of current passed according to a smaller, controlling current. The main current that is controlled goes from collector to emitter, or from emitter to collector, depending on the type of transistor it is (PNP or NPN, respectively). The small current thatcontrols the main current goes from base to emitter, or from emitter to base, once again depending on the kind of transistor it is (PNP or NPN, respectively). According to the standards of semiconductor symbology, the arrow always points against the direction of electron flow. (Figure below)

Small Base-Emitter current controls large Collector-Emitter current flowing against emitter arrow.
Bipolar transistors are called bipolar because the main flow of electrons through them takes place in two types of semiconductor material: P and N, as the main current goes from emitter to collector (or vice versa). In other words, two types of charge carriers—electrons and holes—comprise this main current through the transistor.
As you can see, the controlling current and the controlled current always mesh together through the emitter wire, and their electrons always flow against the direction of the transistor’s arrow. This is the first and foremost rule in the use of transistors: all currents must be going in the proper directions for the device to work as a current regulator. The small, controlling current is usually referred to simply as the base current because it is the only current that goes through the base wire of the transistor. Conversely, the large, controlled current is referred to as the collector current because it is the only current that goes through the collector wire. The emitter current is the sum of the base and collector currents, in compliance with Kirchhoff’s Current Law.
No current through the base of the transistor, shuts it off like an open switch and prevents current through the collector. A base current, turns the transistor on like a closed switch and allows a proportional amount of current through the collector. Collector current is primarily limited by the base current, regardless of the amount of voltage available to push it. The next section will explore in more detail the use of bipolar transistors as switching elements.

 

Chapter 4: Bipolar Junction Transistors

 

Tutorials:

 

 

 

 

Download Image here

 


 


 

 

 

 

 

 

 

 

Write a review

Note: HTML is not translated!
Bad Good